分类
关于股票基本知识书籍

Copula-GARCH模型下的两资产期权定价

Matlab随机波动率SV、GARCH用MCMC马尔可夫链蒙特卡罗方法分析汇率时间序列

波动率是一个重要的概念,在金融和交易中有许多应用。它是期权定价的基础。波动率还可以让您确定资产配置并计算投资组合的风险价值 (VaR)。甚至波动率本身也是一种金融工具,例如 CBOE 的 VIX 波动率指数。然而,与证券价格或利率不同,波动性无法直接观察到。相反,它通常被衡量为证券或市场指数的收益率历史的统计波动。这种类型的度量称为已实现波动率或历史波动率。衡量波动性的另一种方法是通过期权市场,其中期权价格可用于通过某些期权定价模型得出标的证券的波动性。Black-Scholes 模型是最受欢迎的模型。这种类型的定义称为 _隐含波动率_。VIX 基于隐含波动率。

存在多种统计方法来衡量收益序列的历史波动率。高频数据可用于计算低频收益的波动性。例如,使用日内收益来计算每日波动率;使用每日收益来计算每周波动率。还可以使用每日 OHLC(开盘价、最高价、最低价和收盘价)来计算每日波动率。比较学术的方法有ARCH(自回归条件异方差)、GARCH(广义ARCH)、TGARCH(阈值GARCH)、EGARCH(指数GARCH)等。我们不会详细讨论每个模型及其优缺点。相反,我们将关注随机波动率 (SV) 模型,并将其结果与其他模型进行比较。一般来说,SV 模型很难用回归方法来估计,正如我们将在本文中看到的那样。

欧元/美元汇率

我们将以 2003-2018 年 EUR/USD 汇率的每日询价为例来计算每日波动率。

图 1. 顶部:欧元/美元的每日汇率(要价)。底部:每日对数收益率百分比。

图 2 显示收益率中没有序列相关性的依据。

图 2. 收益率相关性检验。Ljung-Box Q 检验(左下)没有显示显着的序列自相关作为收益率。

GARCH(广义自回归条件异方差)模型

GARCH(1,1) 模型可以用 Matlab 的计量经济学工具箱进行估计。图 4 和图 5 中的 ACF、PACF 和 Ljung-Box Q 检验未显示残差及其平方值的显着序列相关性。图 4 左上图中的残差项在视觉上更像白噪声,而不是原始收益序列。

图 4. GARCH(1,1) 模型残差的相关性检验。

图 5. GARCH(1,1) 模型残差平方的相关性检验。

图 6. GARCH(1,1) 模型的波动率。

马尔可夫链蒙特卡罗 (MCMC)

MCMC 由两部分组成。_ 蒙特卡洛_ 部分处理如何从给定的概率分布中抽取随机样本。马尔可夫 _链_ 部分旨在生成一个稳定的随机过程,称为马尔可夫过程,以便通过蒙特卡罗方法顺序抽取的样本接近从“真实”概率分布中抽取的样本。

然后我们可以迭代地使用 _Gibbs 采样 _方法来产生一系列参数。经常被丢弃,因为它除了使分布正常化之外什么都不做。后验分布是不完整的。_Metropolis 采样_ 方法和更通用的方法 Metropolis _-Hastings 采样_用于此场景。这两种采样方法更常用于难以制定完整条件后验分布的非共轭先验分布。

随机波动率 (SV) 模型

对波动率进行随机建模始于 1980 年代初,并在 Jacquier、Polson 和 Rossi 的论文在 1994 年首次提供了随机波动率的明确证据后开始适用。波动率创新是 SV 和 GARCH 模型之间的主要区别。在 GARCH 模型中,时变波动率遵循确定性过程(波动率方程中没有随机项),而在 SV 模型中它是随机的。

然而,要获得概率分布的近似形式的归一化因子并不简单。我们可以使用暴力计算来为每个可能的值生成一个概率网格,然后从网格中绘制。这称为 Griddy Gibbs 方法。或者,我们可以使用 Metropolis 算法。在该算法中,要从中提取的提议分布可以是任何对称分布函数。提议分布函数也可以是不对称的。但在这种情况下,在计算从 跳到 的概率比率时,需要包含附加项以平衡这种不对称性。这称为 Metropolis-Hastings 算法。

可以使用 Metropolis-Hastings 算法的更复杂的提议方法来减少序列中的相关性,例如 Hamiltonian MCMC。

图 8. 预烧burin-in后参数序列的自相关。红线表示 5% 的显着性水平。

结果与讨论

去除burin-in后,我们从参数的真实高维联合分布中得到可以近似随机抽取的样本的参数样本集合。然后我们可以对这些参数进行统计推断。例如,成对参数的联合分布和每个参数的边际分布如图 9 所示。我们可以用联合分布来测试这个说法。显然与其余参数不相关。正如预期的那样,并且高度相关,使用它们的联合后验分布来证明采样的合理性。为了提高采样效率,降低序列中样本的相关性,我们可以通过采样改进上述算法,并从它们的三元联合后验分布。然而,如果不是完全不可能的话,为不同先验分布的变量计算出一个紧密形式的后验分布是很麻烦的。在这种情况下,Metropolis-Hastings 抽样方法肯定会发现它的优势。

图 9. 成对参数联合分布的散点图(非对角面板)和参数边缘分布的直方图(对角面板)。

随机波动率及其置信带是通过计算序列稳定后采样波动率的均值和 2.5% 和 97.5% 分位数得到的。它绘制在图 10 中。

图 10. 4000 次burin-in迭代后随机波动率的后验平均值。对于置信带,随机波动率的 95% 分位数间以红色显示。

SV 模型的随机波动性总体上与 GARCH 模型非常相似,但更加参差不齐。这是很自然的,因为 SV 模型中假设了额外的随机项。与其他模型相比,使用随机波动率模型的主要优点是波动率被建模为随机过程而不是确定性过程。这使我们能够获得序列中每个时间的波动率的近似分布。当应用于波动率预测时,随机模型可以为预测提供置信度。另一方面,不利因素也很明显。计算成本相对较高。

R语言Black Scholes和Cox-Ross-Rubinstein期权定价模型案例

Black Scholes期权定价公式作了一些假设。首先是市场没有套利。这意味着不可能有价格差异。第二个假设是基础资产价格遵循布朗运动。第三个假设表明基础股票不支付任何股息。第四个假设是不涉及交易成本,并且可以以任何分数进行基础股票的买卖。最后一个假设是我们知道短期利率,并且该利率随时间是恒定的。现在,我们不需要详细讨论如何数学公式推导该公式。当我们知道用于计算股票期权价格的不同参数时,将使用R来计算股票期权价格。下面我们使用R来计算3个月到期的Apple AAPL股票看涨期权价格。苹果AAPL股票价格为130美元,股票期权合约行使价为140美元。

在这种情况下,股票期权的价格提高到了$ 3.88。现在,如上所述,我们不需要知道如何得出Black Scholes期权定价公式。我们只需要在公式中插入不同的参数,例如看涨/卖出期权,股票价格,执行价格,短期利率,隐含波动率等。现在的问题是我们没有任何方法可以计算隐含波动率。我们只是假设了隐含波动率公式。

现在,如上所述,Black Scholes期权定价公式很大​​程度上取决于隐含波动率。隐含波动率是我们所不知道的。因此,实际上我们不能使用此Black Scholes股票期权价格公式。在大多数情况下,我们使用相反的公式。我们在公式中插入股票期权价格并计算隐含波动率。我们可以使用GARCH模型来计算波动率。

Cox-Ross-Rubinstein股票期权定价公式

Cox-Ross-Rubinstein公式也称为CRR公式,与Black Scholes股票期权定价公式不同。CRR公式中的基本假设是标的股票价格遵循离散的二项分布。这意味着股票价格在每个时期要么上升一定量,要么下降一定量。二叉树正在重组。这意味着在两个时期内,价格可以先涨后跌,或者在相同的最终价格下涨跌。以下是使用与Black Scholes公式相同的行使价,隐含波动率和短期利率来计算Apple股票期权价格。

R语言Black Scholes和Cox-Ross-Rubinstein期权定价模型案例_编程开发

R语言Black Scholes和Cox-Ross-Rubinstein期权定价模型案例_R语言_02

现在您看到了两个公式之间的期权价格差异。价格差异不大。Black Scholes计算的看涨期权价格为3.88美元,而Cox-Ross-Rubinstein公式计算的看涨期权价格为4.03美元。差别不是很大,但确实存在。这是由于两个公式的数学推导不同。在Black Scholes公式中,我们假设一个连续的随机公式,而在Cox-Ross-Rubinstein公式中,我们假设一个离散的二项式公式。W可以通过减少Cox-Ross-Rubinstein公式中的时间步长来减少价格差异。

Copula理论及其在金融分析中的应用研究

【Abstract】 With the development of the financial markets, the dependent relationship between them become more and more complicated and represent nonlinear, asymmetric and tail dependence. Methods based on the linear correlation coefficients can not describe the dependence pattern accurately. Sklar’s theory of copulas believe that the information about the dependence is whole contained in the copula function. In this dissertation, we research the dependence pattern of the financial markets by using copula function, and probe into some theory question of the copula and its application in financial analysis.Definition and some basic property and some related theory of copulas are introduced, dependent characters of some common copula are analyzed. Several measures of dependence educed by copula function is analyzed inside out, these measures can catch non-linear and tail dependent dependence. Several copula parameter estimate methods are summarized. Because marginal distribution function must be assumed when use MLE and the stepwise methods, which apt to cause mistake parameter estimation of copula. However, quasi maxi-likelihood estimation methods only require empirical distribution transformation, and can estimate the parameter of Copula more accurately.For copulas which satisfy certain condition, we construct two statistics.Based on the statistics, goodness fit of tests for copulas are conducted. Moreover, power of the tests is researched by using simulation methods. The Copula-GARCH模型下的两资产期权定价 comparative study with some other methods of tests is carried in term of Copula-GARCH模型下的两资产期权定价 power of tests. The result indicates that, under certain situation, the method put forward in the dissertation is superior to some existing methods of tests.In research of application, copulas are applied to the financial market Copula-GARCH模型下的两资产期权定价 dependent analysis, Value-at-risk calculation and portfolio selection. The empirical results getting from Shanghai stock markets and Shenzheng stock markets show that the mixed Gumbel copula we constructed can describe the asymmetrical tail dependence. Copula-GARCH-GPD model is build up, and used in portfolio selection based on CRRA and simulation methods. The finding of dependence of European dollar and pound sterling is that gs Copula-GARCH-GPD can portray the dependent pattern of the two exchange rate better, and so can win higher Copula-GARCH模型下的两资产期权定价 accumulative yield. Finally, semi-parametric Archimedean copula family have a flexible dependence structure, the positive research of the foreign exchange market indicates this Copula can describe self-adaptively the dependent information included in the data. 更多还原

Copula-GARCH模型下的两资产期权定价

金融市场统计模型与方法pdf下载 is Copula-GARCH模型下的两资产期权定价 a great book that will not leave you indifferent after reading.

Please note that Copula-GARCH模型下的两资产期权定价 this site may not have this book. We collect traffic from all over the internet. Nevertheless, our advertisers are trying to collect for you the largest number of interesting and fresh books. If you have any questions, write to the contacts listed on the main page! All information is collected from open sources.

For what I remember, Copula-GARCH模型下的两资产期权定价 I was always more afraid than anyone else. What happened? Almost nothing - I just had the bout. Are there any spasms of something wrong? Maybe he's afraid he's contagious. And then why are you talking about the devil? Why a prison? I had a piece of bread. It was fresh and fragrant. Yesterday I made him his own hand. I have to say that I really did this time. Suddenly my bite began to bang in my throat. Somewhere near the window, he sat down and began to sneak around his changing trills around. He whispers and leaves for a moment where he likes. Everywhere he finds something in his beak . I've been trying to be in his place .